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WHAT IS THE MOST EFFICIENT HIGH-ENERGY ACCELERATOR?*

Paul J. Channell
\/ Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ABSTRACT

The accelerator configuration that will result in the largest
fraction of accelerator kinetic energy transferred to accelerated
particles is explicitly determined from general principles.

DISCUSSION

The question posed in the title of this paper can be interpreted
in various ways. Rather than survey all the types of accelerators
that exist or have been proposed in search of a candidate for the
most efficient accelerator, I will propose a specific definition for
"most efficient accelerator" and then use this definition to
determine what the most efficient accelerator should look 1ike.
Surprisingly, if we consider only the kinetic energy in the
accelerator, a defintte answer emerges. An answer to this question
that includes the contribution of field energy will be considerably
more difficult to find and is certainly fraught with difficulties,
both in determining what constitutes an acceptable accelerator and
with certain mathematical problems of a technical nature.

By "most efficient accelerator" I mean an accelerator such that
the greatest fraction of accelerator energy is extracted by the
passage of a single bunch of particles. This definition obviously
begs the question of whether or not higher effictency might not be
obtained by energy storage and extraction over the duration of many
bunches. Though I do not address the question of multiple bunches
and efficlency, 1t may be amenable to the kind of analysis I present
here.

1 also define "high-energy" to mean that ihe relacivistic
factor, vy, of the particles to be accelerated is already large
enough that it changes by only a small amount as it passes a given
point tn the accelerator. Precisely how large this is will be
specified presently.

Accelerator energy to be extracted can be categorized as elther
field energy, 1.e., total (E2 + B2)/8w, or as kinetic energy
of particles composing the accelerator. The energy in most
accelerators 1s a mixture of both fleld energy and kinetic energy,
f.e., the field energy in a cavity and the kinetic energy of the
particles comprising the currents in the ':alls. To analyze the
contribution of fleld energy 1s technicaliy difficult because of
various spurfous singularities that can arise; for example, by
placing two charged particles arbitrarily close together, one can,
classically, ext-act arbitrarily large amounis of enerqy with
arbitrartly small displacements. Whether one should regularize
these singularities with a quantur model or by smoothing cs in a
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plasma model or in some other fashion is not clear and may not, in
fact, have a single answer independent of circumstances. Because of
these ambiguities of formulation and difficulties in technical
detall, I will ignore field energy and treat only the kinetic energy.

The question I have posed can now, within the context of the
above assumptions, be rephrased as "What distribution of kineti:
energy among accelerator particles will result in the maximum
fraction of that kinetic energy transferred to accelerated
particles?" In other words, we only have to analyze the interaction
of a single accelerator particle with the accelerated bunch to
determine what inftial velocity at that initial position will result
fn the maximum transfer of energy to the bunch. It is obvious that
the answer is ronzero because a particle at rest can only gain
energy from the bunch, not impart energy to it. That we can ignore
the influence on the trajectory of an accelerator particle of the
other accelerator particles is partially justified by our neglect of
field energy and will be discussed after the calculations.

DERIVATION

Though the question, now, is perfectly well specified and could,
tn principle, be answered in general, I will make a number of
additional nonessential assumptions to simplify the analysis and
arrive at an explicit answer. These assumptions are (1) the
accelerating gradient is small enough that the bunch particles can
be assumed to follow straight-1ine constant-energy trajectories
during the interaction (this is really a limitation on the total
number of particlas supplying the energy), (2) the particles
supplying the energy can be treated nonrelativistically (this turns
out to involve a limitation on the total number of particles in the
bunch), (3) the accelerator particles are arranged about the bunch
fn an azimuthally symmetric configuration, and (4> the accelerated
bunch has transverse dimensions small enough to be ignored. Having
made these assumptions, I can now investigate the motion of an
accelerator particle under the influence of the Fields of the
accelerated bunch that can be assumed to have a straight-line
constant-energy trajectory. The equatton of motion of such a
particle is

} +
m%-ei , 1)

»
where m {s the mass, e Is the charge, E s the electric field of the
bunch, and where we have ignored the force from the magnetic field
because of the assumption of nonrelativistic motion and because the
electric and magnetic fields of the bunch will be about equal in
magnitude. The total energy transfer to this particle from the
bunch 1s

© . »
de = € dt v(t) « ECt) (2)
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where v(t) is the solution of Eq. (1) and E(t) is the electric field
of the bunch evaluated at the position of tha particle at time t.
The solution to Eq. (1) can be written as

t
HOERA +f gt LD (3)
-

If we let the z+axis be the path of the acceleraved bunch and assume
that the accelerator particle lies in the x-z plane, then by using
Eq. (3) in Eq. (2), we find

-
Ac = ej; dt [E (v, + E (v )]

2 [* t t
+ E'—_/‘ dt[Ex(t)/ dt'E (t') + Ez(t)f dtE (t")] . (4)

If we assume that the center of the bunch passes 2z = 0 at t = O,
then the bunch can be described in terms of a distributior, g(x),
where ¢ is normalized to 1 and is the relative density of pnarticles
that cross Zz = 0 at t = t. The electric flelds due to the bunch
are then the integrals over the bunch of the well-known! fields

due to a single relativistic particle; 1.e.,

() x(t)
E_(t) = Ney | d= - (5)
X ,/ 02 + y2vact o ¢ - 28052)372
and
f g(t) (t + © - %l)
E_(t) = Nev | dx , (6)
2 (20t + yAEct o o - B8,2)372

where N 1s the total number of particles in the bunch, and x(t) and
z(t) are the coordinates of the accelerator particle. Thus, we now
need x(t) and 2(t), which, through Eq. (3), depend on E(t). To
solve these equations, we make an expansion and use our assumption
that there are not too many particles in the bunch. Therefore, the
electric flelds are not large enough to cause a change in transverse
position comparable to the transverse coordinate, xo, that the
accelerator particle would have at t = O in the absence of the
bunch. The zero-order terms, i.e., the result assuming stationary
accelerator particles, iIn this expansicn contribute the main effect,
but I keep through the first-order terms to confirm that the -
corrections are indeed small,

Before I begin the expansion, I will collect all dimensional
quantities Into coefficlients by defining dimenstonless vartables as
follows:

wr N
xO

T



g = W (8)

Esl‘;—‘-’ . (9
0

isl‘%l-l . and (10)
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where, with the above assumptions, x and z are small expansion
quantities. With these definitions, the electric fields, Egs. (5)
and (6), can be expressed as

£ (D - Ne <;_ + B |4 4@ — (12>
Xq [+ XD+ (t+T-207]
and
7y =Ne [ .- g(x) (t + T - 2)
E(D) = =2 |dt - : (13)
2 xzf [0+ 02+ Fez-D3

o

where the integrals are now dimensionless and_are of order unity.
Let us begin the expansion about (x = 0, 2z = Q). To zeroth and
first order, Eqs. (12) and (13) become

<y . Ne - - q¢v)
E(E) = =X 11+ %) [ dr -
X x * f [+ (F + 021372
) (18)
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Using Eq. (3) and the definitions of dimensionless guantities, it is
easy to sa2e that, to first order, the coordinates x and z can be
expressed as

g(t)
dt" /dt d : (16)
Yv ymv X / f (1 + (t" + 1)2]3/2
and
Yy t e
7 = df' ¢ [or S22 D an
ymv Xy = - 0+ (t" + ©°]

Note that the electric vields have zero-order terms that survive
even when x, z#0. Note also that x and z are proportional to
1/y and thus vanish at very high bunch energies.

To facilitate further manipulations, let us define the following
functions:

x|

o . .- (D)
hi (D) = | dz — : (18)
! / 1+ (T + 02132
9¢x) (i9)
f [+ (F+ 2152
- ) (t + D)
dz — : (20)
f [+ (T + 02132
= - (7) (t + %)
h,(F) = [ g7 —2 . 2n
4 [ [+ (F+ 02132
and
5t TS

With these definitions we find that Eqs. (14), (15), (16), and (17)
can be rewritten as

(D) = ﬂﬂ% [+ Wb, - 3%h, + 32,1 (23)
X
0
E(T) « M [t 4 3%h. + Zh, - 3Zh.] (24)
2 2N 3+ 51

o



v_ t
X = °§ + dt! dt" h @, (25)
Y ymv X

-

v 2
dt' dt . (26)
Ymv X
-0 -0

Using Egs. (25) and (26) in Eqs. (23) and (24) and putting the
results in Eq. (3) we find that the energy change can be written as

and

NI
R

2 V..o VI 1 2 a
e = %e—- -—-——oc ] + ____OZVZ + ——'——Ng <a3 + -%) , 27)
0 \ mvEx Y
o
where we have defined
o E-Z: df[(l+i)h] - 3kh, + 3Zh,1 (28)
% E[; df(-h, + 3%hy + Zh, - 32h) (29)

© _ t -
oq E_Z: dtlC1+x) - 3ih2 + 3Eh3]'Z: dt'[(1+X%) - 3>"<h2 + 32h3] , (3
and

t
Xli; dt'(-h, + 3xhy + Zh, - 3Zhg) . (31)

Note *hat these coefficients contatn zeroth-, first-, and second-
order terms. To be consistent, we should drop the quadratic terms;
let us define

%o F /. h,dt (32)
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so that in this approximation
B [ B B
%2 % %0 * %y
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and

ag X4 * %4

We now want to maximize the function f = -Ae/e_ ¢

E!; dt[x(h] - 3h2) + 3Zh3] .

= dt[3xh3 + z(h, - 3h5)] )

€y Is the
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(42)

(43)

initial energy of an accelerator particle, eg = mv6/2) with respect



to the initial velocity, vy, this will maximize the fraction of energy
transferred to the accelerated bunch. Continuing with the expansion,
we write

A = Aeo + Ae] . (44)
and

> > >

vo =W, o+ LT (45)

where the subscripts on the right-hand sides refer to the order of
the term. To maximize f we require that

LY (46)
av
0

It is easy to confirm that to Towest order, Eq. (46) becomes
dle 2Ae°w

o . (47)
o] 0

Using Eqs. (27) and (40)-(43) in Eq. (47), a little calculation
reveals that the maximum condition becomes

2 2
Qyp = EZQE W, &y~ t %02%20 + e %30 + e 249 (48)
10 Wg ox 10 Y myX YmVX
and
a 2w W _a Neza Neza
20 oz | L 2z20 30 | 40 (49)
y T2 |Tox 10 Y mvx,, ymvx |
o

Taking the ratio of Eqs. (49) and (48) gives

X
(o]

[+ 3
z 20 » (50)
ox T%0

x

Thus, we see that the z component of the velocity is smaller than
the radfai component by at least 1/y. In addition, if we assume
for simplicity that the bunch is symmetric about its center, {.e.,

§-D - GO, (51)

then it 1s easy to see that apg = 0 and, thus, that wyz; = 0.
Therefore, with the assumption of symmetry, Eq. (48) gas the solution
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where we have used the fact that agqp also vanishes under the
assumption of symmetry. Inserting these solutions in the expression
for the fractional energy extracted, we find that to lowest order,
the fraction is

%0 . (53)
o) 2a30

Finally, using the assumption of symmetry, Eq. (51), one can easily
show that

2
bl
g = "3 (54)
so that the maximum extracted fraction is fo = 1 (i.e., 100%). The
initial velocity required to produce this optimum efficiency can be
obtained from Eqs. (52) and (54) and is given by

wOZ =0 , and (55)
wox = —m—x-o-— . (56)

where ajg 1s given by Eq. (32). In summary, the optimum accelerator
configuration is orna in which the accelerator particles are moving
purely radfally (for a symmetric bunch) with a velocity proportional
to the number of particles in the accelerated bunch and inversely
proportional to the distance of the accelerator particle from the
bunch axis. As a numerical example, let us consider the following
case:

Ne100 | (57)
%0 =1 (58>
va=¢ , and (59)
xo =1 mm . (60>

We then find that

w
-2 -c.028 61)

thus confirming, a posteriori, the nonrelativistic assumption.



Carrying out this expansion to any order is completely
straightforward but tedious. For completeness, we can give the
first-order correction to wy, i.e., wy.

W LU
1x mvxo 11 @y 2
Y %10
2 da da da
Ne 11 31 1 4]
-—=—— 20—+t 55 + 5 ) (62)
mvxo ( 108vox avox Y2 avox)]
and
S A PO W T Wi 1 (63)
12 mzvzxoz 10 avoz avoz Y2 avoz

If in Eqs. {62) and (63) we insert the expressions (36)-(39) for
aiy and expressions (25) and (26) for x and z, we see that the
ratio of wy to wy is approximately

Ne2

ymvzx

(64)

il
w

o

o

and thus is small when the right hand side is small. As an example,
taking our previous parameters (57)-(60), we find that for the
right-nand side of Eq. (64) to be small, we must require

y > 0.028 , (65)

which is obviously true. We thus see that the nonrelativistic
restriction, i.e., Eq. (56) is small, is more stringent than the
condition that the lowest-order term dominate.

To evaluate the condition that the change in bunch energy be
small compared to the energy, we first observe that the time T for a
bunch particle to pass an accelerator particle is approximately

X

T = ;% . (66)

The amount of energy given up by an accelerator particle at xg 1s

2.4
N=e
Ag = 55 (67)

2mv xo

so that if the number density of accelerator particles at that xo
s n(xy), the total energy gained by the bunch from particles at
that location tis



2 4
N~e
Ae = Zw/ch n{x_) dx . (68)

bunch o 0 vazx 2 7o

o

Thus, the enercy gain per bunch particle compared to its energy is

4
By . _mNe fn(x )dx (69)
Y Y2m2v4 2770

which should be small for our approximations to be justified.

If an accelerator particle is acted on by potentials from other
accelerator components then the amount of energy transfer to the
bunch will be essentially unchanged if this energy transfer is large
compared to the difference in potential in the distance the particle
moves in time T [Eq. (66)]. Thus, our analysis will have greater
validity than the initial assumptions seemed to imply under most
circumstances, though extreme accelerator conditions with steep
gradients ir potential may require further analysis.

In summary, I have found, considering only the kinetic energy,
the optimum accelerator configuration and the maximum efficiency
*hat can be obtained. Clearly a number of refinements to my
calculation could be made; in particuiar, the effects of bunch
asymmetry and transverse bunch size could be easily taken into
account. Whether such a general analysis can be done including the
field energy is still open to question. In any event, it is
tempting to conjecture that no other configuration with an
efficiency this high (100%) exists. Whether the configuration I
have found can be realized or is practical is a question for future
study.
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